SDC, Data Science and Knowledge

Florence le Ber

From SDC, Data Science and Knowledge
Jump to navigation Jump to search

Dr. Engineer, HDR in computer sciences

Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES) : national engineering school of environmental hydraulics

Director of the research departement of ENGEES

E-mail: florence.leber at

Web (ENGEES) : (french)

Phone: 33 3 88 24 82 30

Current and recent Projects

  • AFB (2019-2020) : A tool for extracting temporal pattern of water quality status changes (dir. Corinne Grac, LIVE)
  • CS ENGEES (2019-2020) : AdQeau - Analysing water quality changes (with P. Gançarski)
  • CS ENGEES (2016-2018) : Automatic recognition of sketch maps (dir. Carine Heitz, Geste)
  • API ICube SEMNET (2017-2018) : Sensor Networks for Smart Factories
  • ONEMA (2015-2016) : Temporal data mining of national data on water courses (dir. Corinne Grac, LIVE)
  • ANR FRESQUEAU (2011-2015) : Data mining for assessing and monitoring the hydrobiological quality of water streams
  • AERM project Gerihco (2010-2013 / 2015-2017) : Interdisciplinay approach to understand the muddy flood risk (dir. Anne Rozan, Geste)


  • Data Mining (master "Environmental Geography ")
  • Description logics (master "Computer sciences")

Previous labs

  • INRA Nancy, LIAB (1991 - 1999)
  • LORIA INRIA, équipe Orpailleur (2000 - 2002)
  • CEVH (2003 - 2008)
  • LHYGES (2009 - 2012)


  • Books

B. Bucher & F. Le Ber (eds.). Innovative Software Development in GIS. Wiley, London, 2012.

F. Le Ber, G. Ligozat & O. Papini (eds.). Raisonnements sur l’espace et le temps : des modèles aux applications. Traité IGAT, série Géomatique, Lavoisier, Paris, 2007. 419 pages.

  • Articles

C. Nica, A. Braud, F. Le Ber. RCA-Seq: An original approach for enhancing the analysis of sequential data based on hierarchies of multilevel closed partially-ordered patterns. Discrete Applied Mathematics, Volume 273, 15 February 2020, pp. 232-251

A. Braud, X. Dolques, M. Huchard, F. Le Ber. Generalization effect of quantifiers in a classification based on relational concept analysis. Knowledge-Based Systems, Volume 160, 15 November 2018, pp. 119-135

F. Le Ber, X. Dolques, L. Martin, A. Mille, M. Benoît Raisonner à partir de cas d’allocation dans des parcelles agricoles RIA - Revue d'Intelligence Artificielle, 2017, 2017 (6), pp. 681-707

X. Dolques, F. Le Ber, M. Huchard, C. Grac. Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis. International Journal of General Systems, Taylor & Francis, 2016, 45 (2), pp. 187-210.

J. Wiederkehr, C. Grac, B. Fontan, F. Labat, F. Le Ber, M. Trémolières. Experimental study of the uncertainty of the intrasubstrate variability on two French index metrics based on macroinvertebrates. Hydrobiologia, Springer, 2016, 779(1), pp. 59–73.

M. Fabrègue, A. Braud, S. Bringay, C. Grac, F. Le Ber, M. Teisseire. Mining closed partially ordered patterns, a new optimized algorithm. Knowledge-Based Systems, Elsevier, 2015, 79, pp.68 - 79.

S. L. Berrahou, N. Lalande, E. Serrano, G. Molla, L. Berti-Équille, S. Bimonte, S. Bringay, F. Cernesson, C. Grac, D. Ienco, F. Le Ber, M. Teisseire. A quality-aware spatial data warehouse for querying hydroecological data. Computers and Geosciences, Elsevier, 2015, 85, pp.126-135.

... others here :